tortreinador.utils package#
Submodules#
tortreinador.utils.Recorder module#
tortreinador.utils.View module#
- tortreinador.utils.View.get_lastlayer_params(net)[source]#
get last trainable layer of a net :param network architectur:
- Returns:
last layer weights and last layer bias
- tortreinador.utils.View.init_weights(net)[source]#
the weights of conv layer and fully connected layers are both initilized with Xavier algorithm, In particular, we set the parameters to random values uniformly drawn from [-a, a] where a = sqrt(6 * (din + dout)), for batch normalization layers, y=1, b=0, all bias initialized to 0.
- tortreinador.utils.View.split_weights(net)[source]#
split network weights into to categlories, one are weights in conv layer and linear layer, others are other learnable paramters(conv bias, bn weights, bn bias, linear bias) :param net: network architecture
- Returns:
a dictionary of params splite into to categlories
- tortreinador.utils.View.visualize_lastlayer(writer, net, n_iter)[source]#
visualize last layer grads
tortreinador.utils.WarmUpLR module#
tortreinador.utils.metrics module#
tortreinador.utils.plot module#
- tortreinador.utils.plot.calculate_GMM(p, m, s, y_label)[source]#
Calculate the probability density function of the Gaussian Mixture Model
- Args:
param p: pi
param m: mean
param s: standard deviation
param y_label: e.g. np.arange(0, 1, 0.001)
- tortreinador.utils.plot.plot_line_2(y_1: str, y_2: str, df: DataFrame, output_path: str, fig_size: tuple = (10, 6), dpi: int = 300)[source]#
Plot Merge Line (2 Lines) using Seaborn
Args:
param y_1: Name of Line 1
param y_2: Name of Line 2
param df: Dataframe
param fig_size:
param output_path:
param dpi:
return: Show Line picture and save to the specific location
tortreinador.utils.preprocessing module#
- tortreinador.utils.preprocessing.load_data(data: DataFrame, input_parameters: list, output_parameters: list, feature_range=None, train_size: float = 0.8, val_size: float = 0.1, if_normal: bool = True, if_shuffle: bool = True, n_workers: int = 8, batch_size: int = 256, random_state=42, if_double: bool = False)[source]#
Load Data and Normalize for Regression Tasks: This function preprocesses data specifically for regression tasks by handling data splitting, optional shuffling, normalization, and DataLoader creation.
- Parameters:
data (pd.DataFrame) – The complete dataset in a Pandas DataFrame.
input_parameters (list of str or int) – Column names or indices representing the input features.
output_parameters (list of str or int) – Column names or indices representing the target variables.
feature_range (tuple of (float, float), optional) – The range (min, max) used by the MinMaxScaler for scaling data. Defaults to (0, 1).
train_size (float) – The proportion of the dataset to include in the train split (0 to 1).
val_size (float) – The proportion of the training data to use as validation data (0 to 1).
if_normal (bool) – Flag to determine whether to normalize the data using MinMaxScaler.
if_shuffle (bool) – Flag to determine whether to shuffle the data before splitting into training, validation, and test sets.
n_workers (int) – The number of subprocesses to use for data loading. More workers can increase the loading speed but consume more CPU cores.
batch_size (int) – Number of samples per batch to load.
random_state (int, optional) – A seed used by the random number generator for reproducibility. Defaults to None.
if_double (bool) – Flag to determine whether to convert data to double precision (float64) format.
- Returns:
Contains Train DataLoader, Validation DataLoader, Test X, Test Y, Scaler for X, and Scaler for Y. - Train DataLoader (torch.utils.data.DataLoader): DataLoader containing the training data. - Validation DataLoader (torch.utils.data.DataLoader): DataLoader containing the validation data. - Test X (np.array): Features of the test dataset. - Test Y (np.array): Targets of the test dataset. - Scaler X (sklearn.preprocessing.MinMaxScaler): Scaler object used for the input features. - Scaler Y (sklearn.preprocessing.MinMaxScaler): Scaler object used for the output targets.
- Return type:
tuple